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Rarely, in the press of day-to-day scientific
work, 1s there a quiet moment to stand back and
survey our part of the geophysical landscape.
These quadrennial reviews, it seems to me, are the
ideal place in which to do so. But too often we
have had a deadening recitation of details rather
than a lively forum. I could not write that kind of
review. Atmospheric radiation is not just a col-
lection of facts. It is a human enterprise, brim-
full of the usual conflicts, triumphs, and trage-
dies found in any enterprise. And it operates in
a larger context. I feel that it is essential to
address these aspects, as well as the technical
ones. What I have attempted therefore, is a sci-
entific essay, expressing my own reasoned opiniomns
and making judgements of value. Delicate issues
are not bypassed, but I have tried to look at them
fairly and objectively. To those who feel their work
is not sufficiently showcased, I offer my apolo-
gies; but I feel we have to attend to certain
large issues of great import first.
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Trace Gas Greenhouses

Trace gas greenhouse effects are one of the two
theoretical problems (the other being cloud radia-
tion) that have catapulted radiation scientists on-
to the center stage of atmospheric science. It be-
gan with the modern renaissance (it has had sever-
al incarpations) of the CQ; problem in the early
1970's. That problem has mushroomed to interna-
tional proportions. DOE, with shrinking budgets
in most areas, has a growing budget for CO, stud-
ies (0ak Ridge has even established a "Carbon
Dioxide Information Center"). Further impetus
came from the CIAP ozone-reduction scare and then
from Ramanathan's (1975)discovery of the signifi-
cant greenhouse effect of Freons.

The net is now being cast more widely, as it is
recognized that other trace gases -- N0, CH,, vo-
latile organics, and so on -~ all have perceptible
greenhouse effects (e.g., Ramanathan, 1980; Lacis
et. al., 1981). Furthermore, many of these gases
are increasing right along with CO.; it is esti-
mated that, until the year 2000, their combined
greenhouse effects will pace that of CO, (WMO,
1982). This is because, being optically thin,
their radiative effect increases limearly in their
concentration, while that of CO,, being optically
thick, increases only logaritlmically. And they
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often have much larger cross-sections per molecule
than CO, (especially the Freons).

The trace gas problem has helped us to forge
many interdisciplinary connections, wherein, I
believe, lies the future of our field. The big
GCM's are turning more and more to examinations
of the effect of CO, radiative forcing on dynam-
ics, energy transfer, precipitation, and even
ocean circulation (Manabe/Stouffer, 19803 Hansen
et. al., 1981). Atmospheric chemistry and stra-
tospheric dynamics have become heavily involved,
and now radiative-dynamical-photochemical models
of the stratosphere are being built (e.g., Fels
et. al., 1980y Callis et. al., 1983). The CO.
problem has become such a central focus of atmos-
pheric science that many formerly independent
sheikdoms like air-sea exchange and polar science
are being drawn into its orbit. This, I think,
is a salutary development. It is giving us a un-
ified view of atmospheric science, the way satel-
lites gave us a unified view of the Earth.

Radiative-convective models (reviewed by Raman-
athan/Coakley, 1978) have played a decisive role
in greenhouse (and many other) studies. These
models are truly one of our field's greatest
success stories. They have moved out of the hands
of the original experts (Ramanathan, 1976) and are
now used widely (e.g. Hummel, 1982y Chylek/Kiehl,
1981). They tell us that the major trace gases ——
H,0, COz, and O; in oxrder of importance -- con-
tribute about 30 K to the global average surface
temperature. Minor trace gases contribute another
2 K or so. The longwave and shortwave effects of
stratospheric Oy change on surface temperature
roughly cancel, but the two effects work in the
same direction for tropospheric Os, which, be-
cause of pressure-broadening, is as important as
stratospheric Os. (Ramanathan and Dickinson,
1979, give a particularly thorough treatment of
the Oy question and introduce the intriguing
Fixed Dynamical Heating concept). Stratospheric
water vapor, which exerts a dramatic effect on
surface temperature, may not be as rock-steady as
we have imagined; in fact, it may slowly rise if,
as many believe, it is controlled by the tempera-
ture of the tropical tropopause.

The importance of looking at greenhouse pertur-
bations at the tropopause, rather than at the sur-
face, is still not fully grasped by everyone. New-
ell and Dopplick (1979) created a flap by back-
sliding to a pure surface radiation point of view,
which has been refuted at some length in a very in-
teresting paper by Ramanathan (1981). However, an
important caveat is that, on a regional basis,
tropopause radiative forcing may not be felt at the
surface if (a) direct radiative connection is
blocked (for instance by clouds or the H,0 contin-
uum), and (b) transport is vigorous enough to move
the heat out before it can be convectively commu-
nicated to the surface. This is exactly what hap-
pens in the tropics, according to the new TEC model
of climate (Hoffert et. al., 1983).

The cause of the H,0 contimuum remains contro-
versial. At a conference of experts on water vapor
(Deepak et. al. 1979), many rejected the dimer ex-
planation on the grounds that concentrations were
too small. They preferred the wings-of-strong-
lines explanation, and in fact LOWTRAN and FASCODE
(discussed below) contain a theoretically-derived
continuum from 0 to 20000 inverse cm based entirely
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on line wings. Carlon (1981) has kept the dimer
explanation alive, however, arguing that the low
concentrations deduced for dimers do not account
for the match-making role of ions in the atmos-

phere.

Kaplan emphasized at a meeting in 1980 that the
H,0 continuum in the 15-micron band of CO, mutes
the CO, greenhouse effect. In 1981, not knowing
of Kaplan's work, I discovered a factor of 10 dif-
ference between my own and Ramanathan et. al.'s
(1979) calculations of tropical surface radiation
sensitivity to CO, doubling. It turnmed out that I
automatically had the continuum in the 15-micron
region, by virtue of using LOWTRAN, whereas
Ramanathan did not. Subsequent in-depth re-ex-
aminat ion of the problem by Kiehl and Ramanathan
(1982) revealed a much smaller (25%) effect at the
tropopause than at the surface. Thi#,is an example
of the surprises that may still await us in seem~
ingly well-tilled ground like clear-sky IR models.

A more intense trace-gas greenhouse on early
Earth also seems the best resolution of the
'faint early Sun paradox' (e.g. Kuhn/Atreya, 1979
Owen et. al., 1979), although it seems rather mir-
aculous that these gases would go away at the
right rate to keep the Earth from overheating and
destroying all life. It is also hard to imagine
any other than a greenhouse explanation for the
presence of liquid water on early Mars (Cess et.
al., 1980; Hoffert et. al, 1981).

The activity in the area of spectroscopy and
remote sensing of trace gases is intense (e.g.
Goldman et. al., 1983; Menzies et al., 1981). It
now seems possible to monitor these species with
high accuracy, even remotely. Experimentally, we
have an embarrassment of riches.

The significant remaining problems in the trace
gas area seem less purely radiative -- although
for many of the more exotic minor trace gases,
line parameters and often even band strengths re-
main unknown -~ than interdisciplinary, involving
chemistry and dynamics. Many non-greenhousing
trace gases can chemically alter concentrations of
absorbing species ~- e.g., CO can oxidize (in the
presence of NO) to form tropospheric Os. And
trace gases can feed back on each other through
dynamics -- e.g., when CO, warming of the tropi-
cal tropopause increases concentrations of stra-
tospheric H,O0.

For review articles, WMO (1982) gives an ex-
cellent bird's-eye view; Logan et. al. (1981) looks
at chemistry; and Bach (1976) relates pollution to
climatic change.

The '"McClatchey Tape' and LOWTRAN

One of the most important chapters in atmospher-
ic radiation history was written during the last de-
cade by McClatchey and his colleagues at AFGL. They
entered a fragmented field -- molecular spectros-
copy —— and left it in such order that we now take
for granted getting the latest line parameter tape
or the latest version of LOWTRAN or FASCODE from
the National Climatic Center.

Things were not always so easy. During the
1950's, Kaplan and Plass did not even include water
vapor absorption in their studies of the IR effect
of CO, changes. Much of the data was suspect,
there were great spectral gaps with no data what-
soever, and one had to laboriously assemble what
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data there was from diverse sources. McClatchey
and his group resolved to improve the situation.
They marshalled all the existing absorption line
data, from the microwave to the visible, and
targeted key spectral regions that needed work.
Then they either did that work themselves, or let
contracts to do it. And with amazing speed they
put together the first uniform compilation of the
important parameters —- wavenumber at line center,
intensity, half-width, ground-state energy, quan-
tum numbers -- for every line that was relevant
to the Earth's atmosphere (including those for iso-
topes). That was 1972. By now (Rothman, 1981),
they are up to some 159,000 lines. As previous
line parameters are proven inaccurate by new mea-
surements, the tape is corrected; and, over the
years, many new lines have been added as well.

This means that IR modelers can now generate
their own band models, with any spectral resolu-
tion they choose. But if they can live with ei-
ther 5 or 20 inverse cm spectral intervals, there
are two more AFGL products of great value -- LOW-
TRAN5 (Kneizys et. al., 1980) and its 5 inverse cm
cousin (Robertson et. al., 198l1). These give
transmission and radiance for arbitrary slant
paths in the atmosphere using a band model of King
fitted from the line parameter data. Refractive
geometry, aerosol extinction (Shettle and Femn,
1979), and the famous ''McClatchey atmospheres'
are available as options.

I was one of the earliest users of LOWTRAN
(LOWIRAN2, then), and it enabled me to make a uni-
fied treatment of shortwave and longwave radiation,
which until then had been regarded as distinct sub-
jects. Thus I view LOWIRAN not merely as a great
convenience, but as an important unifying influ-
ence in our field.

For line-by-line calculations of transmission
and radiation, AFGL has developed FASCODE (Smith
et. al., 19783 Clough/Kneizys, 1979; Clough et.
al., 1981) . FASCODE, as its name implies, is de-
signed for speed. By decomposing the line profile
into four basis functions, it neatly sidesteps an
old problem -- that narrow lines at high altitudes
require a ridiculously dense spectral mesh at all
altitudes. FASCODE convolves any sort of slit
function with the data, among other features. It
is the Cadillac of line-by-line models, except for
its radiance calculation, which uses a very crude
integration, like that of LOWTRAN. Scott and Che-
din (1981) have developed a competing model which
may be faster, if not as versatile, for some
applications.

The original line parameter tape included 7
absorbing species. Partially in response to the
trace-gas greenhouse problem, this has been sup-
plemented by a new trace gas tape (Rothman et. al.,
1981) with line parameters for 13 more species --—
NOx, S0z, €10, O0CS, and other gases suspected of
affecting the ozone layer. The new tape is much
less complete than its Big Brother, but data for
it is being generated at a furious pace, as a scan
of the " trace gas" section of the Bibliography
will indicate.

Another great benefit of the AFGL work is the
provision of a standard against which everyone
can measure their work. 1In the past, one could
only compare against measurements which, for all
one knew, were as erroneous as one's own. Now
there is a well-policed, scrupulously maintained,
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and constantly updated data set -— a worthy op-
ponent against which to pit one's own measurements
(Ben-Shalom et. al., 1980, 1981l; Flaud, et. al.,
1980; Skinner/Nordstrom, 1976) . By this process,
the AFGL products are continually improved, to

the benefit of us all.

Cloud Radiation

Cloud radiation leapt to prominence in the early
1970's when GARP planning documents identified it
as one of a handful of critical issues. This stim-
ulated a small flood of theoretical studies, as
well as some new measurements, Theoretical work
divided into the following general areas:

® npicrophysical -- the direct impact of radiation
on droplet growth
® macrophysical -- calculate optical properties

(albedo, etc.) given the microphysics
® plane-parallel and finite cloud models
® enhancement of cloud absorptivity
® spectrally-detailed models with realistic
atmospheres

® parameterizations based on liquid water con-
tent and sun angle

® cirrus clouds

cloud-climate feedback

® radiation-dynamics interactions in stratiform
cloud.

Cloud physicists remain skeptical of Barkstrom's
(1978) idea that cloud droplets grow much faster
near the cloud top as they are exposed to 'the cold
of space' in the 8-12 micron window. But cloud
physicists, like dynamicists, have a history of dis-
missing radiation. That is probably why they have
difficulty explaining aspects of cirrus and other
extended cloud forms. I suspect we will see muchmore
on radiation-microphysics in the future.

Most cloud-radiation models are plane-parallel.
This is the natural milieu in which to test many
hypotheses about cloud radiation. However,
there has been an explosion of papers in 3-D (fi-
nite) clouds, mostly cubical in shape (McKee/Cox,
1976; Aida, 1977; Wendling, 1977; Davies, 1978;
Liou/Ou, 1979; Harshvardhan et. al., 1981; Welch/
Zdunkowski, 1981; Ellingson, 1982; Bradley, 1982).
Monte Carlo and 3-D Eddington methods are the pri-
mary radiative transfer tools used. The earlier
papers proclaimed loudly that finite clouds had low-
er albedos than plane-parallel clouds, because of
leakage out of the cloud sides. This was no great
surprise. More recent contributions (e.g. Davis
et., al., 1979) have tried to find how to normalize
plane-parallel results to agree with the finite
cloud results, which seems more productive. Late-
1y, the emphasis has been on studying cloud-cloud
interaction and the approach to the plane-parallel
limit as intercloud gaps narrow.

The actual or implied denunciation of plane-par-
allel cloud modeling in some finite cloud papers
requires comment. First, measurements are the
acid test of any model; it is not enough that a
model simply 'looks' better. Perhaps a plane-par-
allel model takinmg proper account of vertical in-
homogeneity will agree better with measurements
than typical cubic cloud models with their spa-
tially-invariant liquid water and drop distributions.
Perhaps weighting plane~parallel albedos by the pro-
per measure of cloudiness fraction will correctly
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predict the albedo of patchy cloud fields. But more
importantly, our job is not to make our models as
complicated as nature herself; it is to simplify and
idealize, in order to gain understanding. Plane-
parallel cloud modeling is an entirely acceptable
way to do this. And, on a practical level, (a) we
will never know, or want to know, the shape and size
of every single cloud on Earth, and (b) plane-par-
allel clouds can be modeled with a level of spectral
and angular detail unreachable in finite cloud models.
Our job is to learn how to make simple adjustments
to plane-parallel predictions to mimic patchiness,
not to reject this very valuable modeling approach
out of hand.

Observations of broad-band cloud albedo and ab-
sorption are not very incisive in testing theoreti-
cal models. Therefore, special emphasis has been
laid on' predicting cloud absorption; and here we have
found significant disagreements. Theory (Twomey,
1976; Liou, 1976) finds cloud absorptions no higher
than 20%, as Fritz found in the 1950's. Yet some
observations have been as high as 40% (Reynolds et.
al., 1975). Three explanations have been offered:
leakage out cloud sides, absorbing aerosols, and
very large drops. Leakage undoubtedly explains the
largest disagreements with theory (Ackerman/Cox,
1981). But Twomey's (1977) conclusion that aerosols
are unimportant may have to be revised in light of
recent findings of worldwide soot pollution, in com-~
bination with the Chylek/Srivastava (1973) mixing
rule predicting a possible dramatic enhancement in
the absorption of soot-water mixtures. The Welch/
Cox (1980) conclusion that very large drops could in-
crease absorptivity to over 30% has been muted upon
using a more realistic drop distribution (Wiscombe
et. al., 1983) so there probably isn't much mileage
in this explanation.

Spectrally-detailed models were developed first
by myself in the early 1970's (Wiscombe, 1975) and
later by Dave/Braslau (1975), Twomey (1976), Liou
(1976), and Stephens (1978a). Gaseous absorption
within and above the cloud was included, although
with varying degrees of sophistication, ranging from
a grey-gas assumption to exponential fits. These
models are essential to a proper understanding of
cloud radiation, since the solar spectrum, Rayleigh
scattering, ozone absorption, and water liquid and
vapor absorption all vary dramatically with wave-
length, making the cavalier spectral averaging
characterizing earlier work untrustworthy.

Cirrus clouds were identified as sensitive regu-
lators of surface temperature in the famous radia-
tive-convective paper of Manabe and Wetherald. Spe-
cial attention has therefore been paid to them, al-
though it remains difficult to conduct field pro-
grams at such high altitudes, as has been done by
Griffith et. al.. (1980) and Paltridge/Platt (1981).
Platt (1978, 1979, 1981, etc.) has done a number of
lidar studies as well as making theoretical calcula-
tions. Liou and his students (Roewe/Liou, 1978;
Freeman/Liou, 1979) continue to make theoretical cal-
culations of cirrus radiation in both the shortwave
and longwave reglons, as has Stephens (1980a,b). The
main impression is of the great variability in cirrus
optical properties: emissivity can range from near
zero in sub-visible cirrus to near unity in tropi-
cal cirrus, and albedo from near zero to as high as
50%Z or so.Clearly, in view of the recent
recognition of the ubiquitousness of cirrus (which
was formerly missed by, or invisible to, ground
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observers), this problem is worthy of continued
effort.

The debate continues over whether or not clouds
have a radiative feedback effect on global climate.
Cess (1976, 1982), using broad-band satellite data,
found the albedo cooling and greenhouse warming can-
celling each other when cloudiness increased. Wether-
ald/Manabe (1980) found essentially the same result
in a GCM with interactively-predicted clouds. On
the other hand, Hartmann/Short (1980) and Ohring/
Clapp (1980) found the albedo effect winning by at
least 2 to 1, although they used narrow-band satel-
lite data to make broad-band inferences, for which
Cess has criticized them. Charlock (1981) and
Stephens/Webster (1981) incorporated interactive
clouds into radiative-convective models, finding in
the first case a negative feedback (compared to pre-
scribed clouds) and in the second case such a be-
wildering variety of behaviors that no definitive
conclusion about the sign of the feedback could be
made.

Partly in order to pin down cloud-climate feed-
backs, the International Satellite Cloud Climatology
Project has been launched. Under its aegis, a new
surface cloud climatology is being assembled as
well, by London and Warren. The goal is to obtain
cloud fraction and cloud height, and to this end a
competition between a large number of cloud re-
trieval schemes has been held, with afinal scheme
consisting of the best parts of the best methods
having recently been settled upon.

In the late 1960's, Lilly was forced to put
cloud-top radiative cooling into his boundary-layer
stratus model in order to keep the stratus from dis-
sipating. This gave instant legitimacy to an idea
that had been advanced by radiation scientists like
Moller as early as 1951. There is now a lively de-
bate among PBL theorists, for example as to whether
a vertically distributed radiative cooling rather
than Lilly's delta-function is necessary (Deardorff/
Bussinger, 1980; Lilly/Schubert, 1980; Randall, 1980).
Meanwhile, Herman/Goody (1976) have suggested a
shortwave greenhouse as the cause of observed lay-
ering in Arctic stratus; and Fravalo et. al. (1981)
have observationally and theoretically demonstrated
the importance of both shortwave heating and long-
wave cooling in controlling cloud-top entrainment.
Webster/Stephens (1980) and Griffith et. al (1980)
discuss vast areas of long-lived mid- and upper-
level cloudiness in the tropics, whose longevity
could only be due to radiative forcing.

There is now a much more receptive environment
for radiative-dynamical studies in connection with
extended cloudiness (although cloud physicists con-
tinue to ignore this type of cloudiness). It may
well turn out that neither the formation, nor the
persistence, nor the dissipation of extended clouds
can be explained without radiatiom.

Experiments on cloud radiation have been less fre-
quent than model studies. Fortunately, Cox (1976 and
many others), Herman (1977, 1980), Derr, Ellingson,
Stephens et. al.(1978) and others have not just
taken new measurements of cloud radiation, but have
moved us closer and closer to the Complete Radiation
Experiment, in which cloud microphysics, temperature,
humidity, and even aerosol content are measured si-
multaneously. They have assembled an impressive col-
lection of data which modelers really should have a
look at.

It would be impossible to discuss all the new da-
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ta. Let me merely cite subject areas where signi-

ficant new observations have been obtained:

® tropical cloud systems -- in GATE, MONEX, and
EPOCS (Derr/Gunter, 1982)

® cirrus optical properties (discussed above)

® Arctic stratus (Herman, 1977, 1980; Wendler et.
al., 1981; Tsay/Jayaweera, 1983)

® South Polar clouds (Smiley et. al., 1980)

® cloud particle sizes and shapes from Knollenberg
probes

® re-evaluation of ice refractive index (Warren,
1983)

® complete re-measurement of water refractive in-
dex (e.g. Downing/Williams, 1975)

In connection with the last two items, those who
are still using the old Irvine-Pollack compilationm,
thinking it makes no difference, would be well-ad-
vised to reconsider thelr position.

The hassles involved in such experiments are hard
for theoreticians to imagine. In GATE and MONEX,
for example, radiation missions were often assigned
low priority, or scrubbed altogether. Observational
programs require immense dedication and are not
nearly as productive of publications as yet-another-
multiple-scattering-model. Yet they remain the life
blood of our field.

Earth Radiation Budget

Earth radiation budget, and in particular the
three-satellite ERBE program scheduled to fly next
year (Woerner, 1979; Barkstrom/Hall, 1981, 1982; Hall
1982), is the third great problem which has brought
atmospheric radiation to prominence. Dave Atlas has
called ERBE "the most visible climate-related proj-
ect in the world." If one can find the net radiation
at the top of an atmospheric grid box from a combina-
tion of spacecraft, one immediately has the sum of
the heat storage in, and the heat transport into and
out of, that grid box. Since the present surface
and upper-air network, already costing about $1 bil-
lion, is not likely to grow much, especially in the
Southern Hemisphere, and since that network only gives
reliable estimates of heat transport in part of the
Northern Hemisphere mid-latitudes, the incentive for
a successful ERBE experiment is obvious.
Therefore every effort is being made to make ERBE
a first-class experiment. Many areas which got short
shrift in the past, due to budgetary and other con-
straints, were singled out for special attention,
including:
® optimal orbit configurations
® detailed instrument modeling and error analysis
® calibration against international standards, and
in £light as well

® time- and space-averaging procedures (with spe-
cilal emphasis on the diurnal cycle)

® modeling of the angular variation of the outgoing
intensities, both empirically and theoreti-
cally

® inversion of measurements at satellite altitude
to 'top-of-atmosphere'

® correlative measurements (from the ground, from
aircraft, and from other spacecraft)

® exceptionally thorough scrutiny of the data for
errors (Hall, 1983)

® data archiving procedures (with special empha-
sis on making the data easily available and
useable by outsiders).

The small bibliography does not begin to reflect
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the intense activity in some of these areas; it is
simply that much of the work has not yet found its
way into the journals.

A particularly important aspect of ERBE is its
concern for the post-experimental use of the data.
In the past, it had been assumed that researchers
outside the tightly-knit satellite community -- for
example, experts in weather prediction, climate,
and radiation -- would automatically pick up Earth
radiation budget data and use it. Things didn't
work out that way. A few climate theorists used the
zonally~, annually-averaged data, and still fewer
used the zonally-, seasonally-averaged data, but
this did not amount to widespread usage. So ERBE,
by assembling an international 'Science Team' from
universities and non-satellite government labora-
tories, is trying to assure that the data gets used
to, among other things: improve and/or validate ra-
diation models and simple radiation parameterizations
in climate models (e.g. Slingo, 1982); correlate
radiation budget with observed meteorological varia-
bles -- in both directions; study diurnal cycles;
and better understand the role of clouds. This is
as important as the taking of the data itself.

In some ways, the ERBE Science Team is a stalk-
ing horse for the entire atmospheric science commu-
nity. That community has not made much gquantitative
use of satellite data. By inducting the team members
into a satellite program from its very inception,
and letting them have a say in how it is run (through
Working Groups to which each member is appointed),
it is hoped that the barriers which have existed may
be broken down.

Meanwhile, the Earth radiation budget data from
Nimbus 6 (Smith et. al., 1977; Jacobowitz et.al.,
1979; Campbell/Vonder Haar, 1980; Bess et. al., 1981)
and Nimbus 7 (Hickey et. al., 1980) has been and con-
tinues to be analyzed. The CSU school (Oort/Vonder
Haar, 1976; Ellis et. al., 1978; Campbell/Vonder Haar
1980) continues to add to its laurels, culminating
most recently in the fine summation of Stephens et.
al. (1981).

Simple narrow-to-broad-band conversion algor-
ithms (Gruber, 1978; recently improved for the IR
by Abel/Gruber, 1979) continue to be applied by
NOAA-NESS to the operational polar orbiter data
to generate radiation budgets (Winston/Gruber,

1979). This continues to irritate some climate
theorists who feel that this type of conversion
is unwarranted. Nevertheless, after some study
of the problem, I am convinced that it is war-
ranted; it just needs to be done better, and with
more chanmnels. The Europeans are already doing it
(Gube, 1982). Suomi's VAS instrument on GOES,
with some 18 nmarrow channels, for example, would
probably give more than enough information to
characterize the entire spectrum. And there are
many other narrow channels on other satellite
systems -- Tiros, Landsat, DMSP -- which could be
used as well.

On the subject of narrow bands, Ramanathan
(1979) raised a lonely voice calling for some
restricted channels (e.g. the CO; l5-micron band)
as well as broad-band chapnels on future Earth ra-
diation budget experiments. I would like to add
my voice to his. His argument is simply this: the
climate may change -—- for example due to CO, --
without giving any signal in the total longwave
flux to space. But there will be a signal in re-
stricted bands. This is most definitely worth
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looking for, especially since, in the Workshop on
First Detection of CO, Effects held last year,
every surface-based measurement of climate change
had charges of ambiguity laid against it.

There are some very positive developments tak-
ing place in the satellite area, signalled not
only by ERBE, but by the appearance of more so-
phisticated theoretical and experimental analyses
of problems like angular modeling (King/Curran,
1980; Davis/Cox, 1981; Smith/Green, 1981).
Equally important, perhaps, is the appearance
of this work in the journals —— a welcome break
from satellite tradition. After a decade of
heavy reliance on empiricism, the new emphasis
on advanced modeling and mathematical techniques
is sorely needed.

Aerosol Radiation

To many outside our field, there seems an over-—
emphasis on aerosol radiation (the Bibliography con-
tains some 250 entires in this area!). In truth,
many within the field have voiced the same opinion.
The small (< 1%) changes in planetary albedo
wrought by stratospheric aerosols hardly seemed
worth the flood of papers on this subject (see
Cadle/Grams, 1975; Coakley, 198l1). Normal tropos-
pheric aerosols have larger optical depths; but
with a washout/rainout time of 1-2 weeks, Bryson's
Human Volcano seems unlikely to materialize. And
one would have to assume fixed cloudiness to assign
aerosols an unambiguous role in climatic change,
except in cloudless regions like the Rajasthan
Desert in India, studied by Bryson.

Nevertheless, there are important reasons for
pursuing aerosol radiation studies. The first is
that we have had four minutely-examined volcanic
explosions -- Agung, Fuego, St. Helens, and now
El Chichon -- providing unparalleled opportunities
for observing short-time-scale climatic change
caused by reduced insolation to the troposphere
(e.g. Pollack, 1976; DeLuisi/Herman, 1977; Russell/
Hake, 1977; Cess et. al., 1981; Ogren et. al.,

1981; Howard, 1981; Mitchell, 1982). These are

the only global-scale climate-change experiments
available to us (Hansen et. al., 1978), except for
the few-tenths-of-a-percent flickering of the solar
'constant' and the much longer-term CO, effect.

Such events warrant intense concentrations of effort.

The second reason is that mankind may be adding
a very insidious and powerful absorber to the natur-
al tropospheric aerosol -- soot. (Gray (1976) has
proposed that we do this on purpose, for weather
modification.) This idea is not new —- Weinman
looked at it in the late 1960's -- but it was only
recently that the incredible ubiquitousness of soot
became known. Very few laboratories had been able
to analyze aerosol samples for soot —-- mass spectro-
meters miss it. Those few that did -- especially
Rosen et. al. (1978) and Charlson -- began finding
soot everywhere but Antarctica. There is now a pro-
gram to study its effect in the Arctic (Shaw/Stamnes,
1980; Rosen et. al., 1981; Porch/MacCracken, 1982;
Cess, 1983) where it may reach optical depths of 0.2.
And if it is scavenged by falling snow, it can reduce
snow albedo by 10-20% or more (Warren/Wiscombe,
1980). An entire conference (Novakov, 1979) has
been held on "Carbonaceous Particles in the Atmos-
phere."

The third reason is that global climate models
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have lacked any aerosol influence in their radiation
parameterizations, much less any aerosol feedback,
as for example in altering cloud microphysics. Yet
even background aerosol effects are larger, in flux
units, than the perturbations like 2xCO, that have
been examined. Reck (1976) and Charlock/Sellers
(1981) have looked at aerosols in the context of
radiative-convective models, which is the normal
first step before trying to put them in more com-
plex models.

The fourth reason is that aerosol pollution of
all sorts substantially alters the urban boundary
layer through radiative-dynamic interactions (e.g.
Welch/Zdunkowski, 1976; Venkatram/Viskanta, 1977).

The Workshop on Light Absorption by Aerosols
(Hindman/Gerber, 1981) brought experimenters with a
wide variety of instrumental techniques together
to measure imaginary refractive index of several
precisely-monitored aerosol types. Errors of 1/2
an order of magnitude and more were common, and it
was not clear who was right. This sort of activi-
ty is of much greater value, at this point, than
further aerosol-radiation modeling studies.

Characterization of the size distribution has
advanced beyond the "Junge Era" (cloud radiation
is still stuck in the "Deirmendjian C.1l Era"). It
is recognized that the highly absorbing particles
(soot, hematite) are concentrated in a sub-micron
mode, while the more transparent particles (sili-
cates and sulfates) are concentrated in a second,
large-size mode (Lindberg/Gillespie, 1977). Opti-
cal properties of many common aerosol materials
have been measured as a function of wavelength
(see especially the series of papers by Patterson),
although not with the spectral thoroughness of
water and ice,wyhich are easier to study because
perfect plane surfaces can be obtained. Growth of
hygroscopic aerosols with relative humidity has
been modeled and measured (Zdunkowski/Liou, 1976).
All in all, knowledge of aerosols advanced so rap-
idly that already in 1976 it was possible to param-
eterize their radiative effects (Toon/Pollack),
although this has been largely superseded by the re-
markably comprehensive effort of Shettle/Fenn (1979).

Pressing problems include mixing rules for the
average radiative effects of soot/non-soot mixtures
(the conventional ones don't predict as much ab-
sorption as is observed -— see Ackerman/Toon, 1981);
scattering and absorption by non-spherical particles
(discussed below); and gas-to-particle conversion
processes, such as apparently generate the Antarc-
tic and stratospheric aerosols. Another interest-
ing area is the coupling between radiation and dy-
namics in dusty situations; this has been conclu-
sively demonstrated during Martian dust storms
(Zurek, 1978), and on Earth there have been many
arguments that dust stabilizes the lapse rate.

Single Scattering

Mie theory remains the backbone of our treat-
ment of single scattering. New algorithms for ex-
act Mie scattering (Wiscombe, 1980) are enjoying
wide popularity. Some people are even doing single
scattering calculations on microcomputers (Barber,
1981)! Even in cases where we know the particles
to be nonspherical, Mie theory is still often the
best approximation. Unless the particles have
one specific shape, or are preferentially oriented
by aerodynamic forces, like ice needles or plates,
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it is very difficult to take any credible account
of non-sphericity which improves on Mie theory.
Pollack and Cuzzi (1980) have proposed a simple
scheme to adjust the Mie single-scattering albedo
and asymmetry factor, but the calculations of Mug-
nai and myself show these adjustments to fail in
general. Other schemes for modifying Mie theory
have met with still less success.

Nevertheless, non-spherical particle scattering
has become a significant focus of activity. (Liou
introduced the subject into atmospheric science in
the early 1970's, by approximating cirrus particles
as infinite cylinders.) In 1979, Schuerman (1980)
hosted a meeting on the subject which brought to-
gether atmospheric scientists, electrical engineers,
and experimentalists for the first time. Electri-
cal engineers had been solving scattering problems
for a variety of odd shapes since the early 1960's
(e.g. Uslenghi, 1978; Morgan/Mei, 1979). We have
adopted the best of their techniques, for example,
the EBCM method of Waterman as extended by Barber/
Yeh (1975).

A singular triumph was the exact solution of the
spheroidal scattering problem (Asano/Yamamoto, 1975;
Asano/Sato, 1980). The formulas are fiendishly in-
volved, and apparently run into numerical difficul-
ties for size parameters greater than 30. But then,
so did Mie calculations in the early days. I have
no doubt these numerical problems will be solved, al-
though, what with the immense computational expense
of averaging over orientation, spheroidal calcula-
tions will never become as widespread as Mie calcu-
lations. Probably the first reasonable non-spheri-
cal adjustments to Mie theory will come from a care-
ful study of spheroidal scattering.

In one way, spheroids are special, however: they
are convex. This is what led Mugnai and I to study
wavy-surface particles, with mild concavities. We
found these concavities to have a striking effect.
Since many natural aerosol particles have rough
surfaces (to say nothing of those which are honey-
combed with voids), it is likely that the qualita-
tive effects of non-sphericity are not going to be
entirely revealed by studying the spheroidal case
alone. In particular, if cavities and voids trap
radiation, like a black-body cavity in the labora-
tory, particle absorptivity may be enhanced.

The other shape for which a new solution has
been derived is the hexagonal column (Wendling et.
al., 1979; Coleman/Liou, 1981; Cai/Liou, 1982).With-
in this solution must lie many of the most interest-
ing phenomena of meteorological optics, which are
usually analyzed with simple ray-tracing (Tape,
1980). However, after looking at the many natur-
ally-occurring shapes of ice crystals in the atmos-
phere, I would say that we still have a long way to
go in characterizing ice-particle scattering. Weil/
Chu (1980) have given approximate solutions for ice
crystal plates which are thin relative to the wave-
length. Measurements of ice crystal scattering are
much rarer, because the crystals fall so fast, but
Sassen has studied the problem in a series of pa-
pers, and Winchester and Jayaweera have made mea-
surements which are unpublished at the time of this
writing.

Chylek, in a series of papers, has looked for
simple ways to approximate various features of non-
spherical scattering without solving Maxwell's
equations exactly. Whitney (1979) has proceeded in
somewhat the same vein, invoking an entropy-like
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principle, but I confess to not understanding her
paper in a quick reading.

Two techniques have been developed for studying
single-particle scattering. One is to build micro-
wave-sized analogues, which was invented in the
U.S. but languished here while the Europeans (Zer-
ull, 1976) took the lead. Schuerman et.al (1981)
revived the U.S. effort, but this has been cut short
by Schuerman's untimely death.

The other technique is 'optical levitation'
(Ashkin/Dziedzic, 1980, 1981; Grehan/Gouesbet,1981).
Here, the particle is suspended by radiation pres-
sure in a vertically-pointing laser beam —-- no
strings, wires, or spider webs! Incredibly fine
details of the scattering process can be monitored
in this technique.

Mie theory itself continues to be a subject of
study. 'Complex angular momentum theory' (Nussen-
zveig, 1979) has finally cracked a problem that
eluded even Van de Hulst (1981) -- namely, the cor-
rect large-radius asymptotic formulas, including
the surface-wave terms. The new formulas are ex-
cellent approximations and are free of the annoy-
ing 'ripple' that plagues exact Mie calculations.
By including just 4 or 5 terms in the CAM expansion,
accurate results can be obtained down to size param-
eters of 15-20 (Nussenzveig/Wiscombe, 1980).

Standard 'mixing rules' for calculating the mean
refractive index of a heterogeneous particle have
recently been challenged by Chylek/Srivastava
(1983). (Niklasson (1981) and Bohren/Battan (1980,
1982) have also re-examined mixing rules.) If this
work is correct, mixtures of soot with non-absorb-
ing material can be much more absorbing that pre-
viously thought.

In 1979, an entire issue of J. Opt. Soc. Amer.
was devoted to a conference on meteorological op-
tics. This is a rather curious 'field', populated
mostly by hobbyists who lave it but earn their keep
doing other things. I couldn't help wondering how
some of these optical phenomena might be used for
remote sensing, but perhaps that would require a
degree of pattern recognition and color discrimi-
nation found only in the human eye. Considering
the expense of mounting field experiments to look
at ice crystals and water drops in situ,however,
perhaps it would be worth a try.

Multiple Scattering

I must admit that my own early experiences in
radiative transfer have left me with a somewhat
jaundiced view of what does or does not constitute
an original contribution in this field. In my first
job, in 1969, I was immediately thrown into a prob-
lem of time-dependent spherical radiative transfer.
A problem in time-dependent 2-D cylindrical radia-
tive transfer quickly followed. ,In all this, I
was tutored by old hands like Burt Freeman, veter-
ans of Los Alamos and Livermore who had been grap-
pling with very nasty radiative transfer problems
for years. Thus, it has been hard for me to watch
some of my colleagues in atmospheric radiation re-
inventing the wheel.

Nevertheless, there are unique aspects of atmos-
pheric radiation which these people never dealt
with. First, they used scattering iteration methods
(like Herman et. al., 1980), which restricted them
to optical depths less than about 10. They had no-
thing like adding-doubling. Second, their absorp-
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tion coefficients varied smoothly with wavelength;
they did not have to deal with line structure.
Thirdly, they dealt mostly with isotropic and lin-
early anisotropic phase functions, not our sharply
forward-peaked ones. (I directed much of my own
research into those three areas.)

The key discoveries of the 1960's were: doubling,
by Van de Hulst; adding-doubling, by Grant/Hunt;
and Fourier expansion in azimuth, by Dave. By 1971,
both the adding-doubling and spherical harmonics
(Dave, 1975) methods were fairly mature. But spher-
ical harmonics exhibited both spurious absorption
and wild oscillations in the intensity as a function
of angle. These problems have only been remedied
recently (Karp et. al., 1981). Therefore adding-
doubling became the method of choice, not only be-
cause of its stable numerical properties, but be-
cause its variables —— for example, reflection ma-

trices -- had simple, direct physical interpretations.

Liou revived Chandrasekhar's discrete ordinates
method in 1973, but because it also experienced nu-
merical ill-conditioning (in computing eigenvalues),
and because the physical interpretation was more
obscure, it was not widely adopted. Its defects,
also, have only been remedied recently (Stammes/
Swanson, 1981; Stamnes/Dale, 1982).

In order to obtain intensities which vary smooth-
ly in angle, Davies (1980), Karp (1981), and Stammes
(1982) all recommend the old trick of iterating
the source function. Davies gets the source func-
tion just from the delta-Eddington approximation,
and, considering that delta-Eddington was only de-
signed to give accurate fluxes, obtains remarkable
accuracy in computed intensity (better than 10%).

Various techniques were put forward (Wiscombe,
1976a; Twomey, 1979; Cogley/Bergstrom, 1979) for
including thermal emission in scattering calcula-
tions. More important than the techniques them-
selves, was what they signalled: that we were no
longer going to let the IR be the province of pure
absorption. We wanted to know how scattering me-
dia like aerosols and clouds behaved in the IR.

When I first went to NCAR, I met a solar physi-
cist who crowed about how advanced the astrophy-
sical radiative transfer techniques were, com-
pared to my own humble fumblings. Nevertheless,
as they stood, his techniques were ill-suited to
atmospheric problems. Barkstrom (1976) has taken
the best of the astrophysical ideas and developed
a technique which is suited to the atmosphere. It
is numerically stable and particularly useful for
strong spatial inhomogeneity.

Lenoble (1977) performed an exceptional service
by undertaking an intercomparison of many exact and
approximate methods for 5 standard problems. I and
many others submitted results to this 'competition’,
and for the first time we could all see that we were
calculating fluxes accurately to about 3 significant
digits, and intensities to 2 (except for the Monte
Carlo methods). This seems sufficient for atmos-
pheric work.

We have seen really important breakthroughs in
simple approximations for highly anisotropic phase
functions. It began with the extended two-stream
(Coakley/Chylek, 1975) and delta-Eddington (Joseph
et, al., 1976) methods and more or less culminated
in the unifying analyses of Meador/Weaver (1980)
and Zdunkowski et. al. (1980). Two important pur-
poses were served: first, simplification, which of-
ten leads to better understanding; and second, pro-
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viding a useful tool to climate modelers and other
non-experts, who had great need of it. And, on

the subject of approximation, Ronnmholm et. al. (1980)
have reminded us that when the properties of the
medium are only known to within a certain error, it
makes no sense to hone our radiative transfer me-
thods to a fine edge.

The time has come, it seems to me, to turn our
attention to other areas than monochromatic, plane-
parallel multiple scattering, lest we be accused of
beating that problem to death. One such area is the
incorporation of a rough surface like the ocean
(Plass et. al., 1975, 1976; Fung/Eom, 1981). Another
is spherical geometry, for cases where the Sun is
near the horizon, as in the polar regions (Leung,
1976; Simmoneau, 1980). Yet another is 2-D (Cros-
bie/Dougherty, 1981) or 3-D (Crosbie/Schrenker,
1982; Kimes/Kirchner, 1982; Du/Liou, 1982) radia-
tive transfer, for dealing with horizontal inhomo-
geneity., And I would emphasize that I am not just
thinking of finite clouds; other quantities, like
aerosol, surface albedo, even temperature, some-
times have sharp horizontal gradients as well.

Another area needing further elaboration is spec-
tral integration across a band of absorbing lines.
The two seemingly distinct methods for doing this --
exponential fitting (Wiscombe/Evans, 1977; Evans
et. al., 1980; Chou/Arking, 1981) and photon path
distribution -- were shown to be essentially the
same by Bakan (1978). Mostly, the pressure scal-
ing approximation is used for dealing with inhomo-
geneous paths, and Chou/Arking have shown how to
make the very best possible scaling approximation,
rather than just using fixed powers of pressure and
temperature the way LOWTRAN does. Still, there is
much 'about these methods we do not under-
stand: their error compared to line-by-line cal-
culations, their suitability for very broad spec-
tral intervals, the limits beyond which they can-
not be pushed.

In closing, I am happy to announce that multi-
ple scattering theory has been experimentally con-
firmed (Graber/Cohen, 1975)!

Measur ement

Until recently, radiation measurements could only
be relied on to a few percent. Even international
standards disagreed until the late 1960's. That
is why I am particularly impressed by the cavity
radiometers of Hickey (1980, 1982) and Willson
(1981) on Nimbus 7 and the Solar Maximum Mission
respectively. These measured the solar 'constant '
variation to 0.1% or so, and incidentally found the
sun to be flickering at the 0.37% level over periods
as short as 30 days! This is an impressive achieve-
ment, especially in the harsh enviromment of space,
where instruments notoriously degrade. Their work
has allowed climate modelers to get on with more
pressing problems without worrying, but not knowing,
how the Sun was changing. (Hoyt (1979) has also re-
viewed Abbott's old work on solar flickering.)

The 1970's can truly be said to be the decade
when atmospheric scientists, like astronomers, be-
gan using almost the whole electromagnetic spectrum.
The Backscattered UltraViolet (BUV) Experiment
probed the stratosphere from space. Visible imagery
made great strides; Landsat enables us to examine
individual puffy Cu with 80-m resolution, and it is
said that DoD satellites can see a tank on the ground
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Near-IR channels were added on NOAA and DMSP satel-
lites for snow-cloud discrimination. Clusters of
4- and 15-micron channels were used to retrieve
temperatures and humidities. METEOSAT brought us
our first moving pictures of the upper atmosphere
at 6 microns. Microwaves, originally used just
for sensing sea ice, now bring us liquid water,
precipitation, soil moisture and snow measure-
ments. And SEASAT carried side-looking radar to
profile the sea surface (Lipes, 1982). These are
but a sample of the achievements.

Many of these same wavelengths are also being
used for surface- and aircraft-based measurements
of: temperature (Murray, 1980), clouds, humidity
(Buck, 1976), trace-gas concentrations, sensible
and latent heat flux, rain (Wang, 1980), wind (Eber-
hard/Schotland, 1980),divergence, turbulence, pre-
sure (Gardner, 1979),aerosols, and PBL height. And
they are often giving values averaged over space,
helping to eliminate meteorolegy's age-old prob-
lem of trying to depict spatially ragged fields
with point measurements. Atlas and Korb (1981)
predict the ultimate replacement of the $1 billion
surface network with "a composite of passive and
active sensors in the visible, IR, and microwave."

The number of clever ways in which lasers are
being used is awe-inspiring (Grams, 1978; Russell
et. al., 1982). From the original few fixed wave-
lengths, a wide spectrum (literally) of possibili-
ties has evolved. Some lasers are even tuneable,
within 1imits! Besides the original ‘'monostatic’
configuration, where laser and receiver coincide,
new bistatic and even tristatic arrangements are
being pioneered (Abreu, 1981). Dual-wavelength
(DIAL) setups have been developed near the oxygen
band at 0.76 microns and elsewhere (Browell, 1979),
which offer particular promise for space-based re-
mote sensing. And Raman scattering, at a wave-—
length slightly displaced from that of the laser
itself, while too weak for distant detection, is
an ideal way of fingerprinting many trace gases
(Petri, 1982). (Applied Optics has become the fo-
cal point for most of this literature.)

Doppler radar has apparently been a quantum
leap forward inthe detailed mapping of storms.
Knollenberg optical probes are working a similar
revolution in cloud physics, allowing vast amounts
of droplet and ice particle size and shape informa-
tion to be collected automatically, rather than by
the painstaking manual methods of the past.

I was particularly taken with the 'bugeye’ in-
strument (Davis/Cox, 1981, 1982) for snapshotting
the intensity field in 12 solid angles simultaneous-
ly. The bugeye was used extensively in MONEX to
develop typical models of cloud and surface angular
scattering. It avoids cosine reponse problems and,
because of the simultaneity, is ideally suited to
aircraft and satellite platforms.

Many of the original satellite instruments were
merely imagers. It was almost impossible to cali-
brate their shades-of-grey into radiometric units.
That is changing now. For one thing, there are
more shades available, as 6~bit data is replaced
by 8- and even 10-bit words. And several groups
have calibrated GOES, Landsat, and METEOSAT against
aircraft, surface, and other satellite measurements
(Kriebel, 1981; Duggin, 1981; Koepke, 1982; Beriot,
1982). The trend away from mere pictures and to-
ward quantitative radiation measurements is a
healthy one.
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High on the list of remaining problems is to take
lots more spectrally detailed measurements, from all
platforms. The ones from Nimbus 3 and 4 were tre-
mendously exciting, and were crucial in validating
the Ellingson/Gille (1978) longwave model. Similarly,
spectrally-detailed measurements of snow albedo
(0'Brien/Munis, 1975) were vital in the inference
of soot in snow (Warren/Wiscombe, 1980). There is
much, much more to be learned in the spectral de-
tail.

Improved measurement accuracy is going to be vital
in the future. The present 1-3% is not going to be
sufficient for examining subtler radiative effects
in the atmosphere. Already, for cloud absorptionm,
some deduced values come out negative due to cancel-
lation of all significant digits in differencing the
measurements. Perhaps some entirely new technology

is needed; perhaps the old type of radiometer is in-
herently imperfectible. Those radiometers convert

radiation into temperature changes. What we should
be looking for is other, more accurately measurable
material properties into which the radiation can be
converted.

Surface Reflectivity

There have been several new compilations of sur-
fdce albedo for the entire Earth (Robock, 1980; Kukla/
Robinson, 1979; Hummel/Reck, 1979). This is much to
be applauded, since for years almost everyone used
the same one or two data sets, and there was a false
sense of security that we really understood surface
albedo. The three new data sets exhibit significant
differences, which more accurately reflects our un-
certainty.

We have learned that desert albedos can be as high
as 40-50%Z, and that they reflect more in the near-IR
than in the visible (Rockwood/Cox, 1978; E.Smith,
1981). This causes 'heat lows' over most deserts;
they reflect away so much solar, and emit so much
longwave, that they actually suffer a radiation
deficit. High desert albedos were adduced as a caus-
ative factor in the Sahelian drought (Berkovsky, 1976;
Charney et. al., 1977; Nortom, 1979). Cess (1978) al-
so examined surface albedo as a climatic feedback
mechanism, but in connection with the biota, and on
Ice-Age time scales.

Models of some types of surface albedo have con-
tinued to improve. They all treat the surface as
an absorbing-scattering medium. Application was
made to dusty surfaces (Egan/Hilgeman, 1978) and
to pure snow (Wiscombe/Warrem, 1980), among others.

Much more needs to be learned about the spec-
tral and angular variation of natural reflectivi-
ties. Models indicate that the usual deviations
from isotropic reflection can be important (Fitch,
1981). The effect of surface roughness needs to
be better known, from the scale of capillary waves
on the ocean (Sidram, 198l), to forest canopies
(where the leaves are scattering ‘'particles', see
Cooper, 1982),to mountain ranges. Theoretical mod-
eling of shadowing and multiple scattering among
surface 'facets', to say nothing of light upwell-
ing from below in the case of snow,sea ice, forest
and ocean, is not very advanced (e.g. Choudhury
1979). Carroll (1982) has made some progress with
a triangular-waveform model of snow-surface rough-
ness. The electrical engineers have developed very
sophisticated surface-roughness theories over the
years (Beckmann/Spizzichino, 1963), but for per-
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fectly-conducting surfaces; these are of some,
but not much help.

Odds and Ends

"No one wants their field parameterized" -- so
said an oceanographer at a recent meeting. This
seemed like a reasonable sentiment at the time; over-
simplification can offend one's sense of the elegance
and subtlety of one's field. Yet radiation scien-
tists have developed many parameterizations (Lacis/
Hansen, 1974; Stephens, 1978b; Chylek, 1978; Liou/
Wittman, 1979; Leighton, 1980; Twomey/Bohren, 1980;
Thompson/Warren, 1980), mostly for the IR and for
clouds, Why are we so willing to parameterize?

Upon reflection, it became clear that the reason
is: we recognize the importance of interfacing
with other fields. In order to do so, we must
simplify our subject to the bare bones, so that it
may run fast on a computer, or be no more complex
than other pieces in a large model, or be useful
for back-of-the-envelope estimates in a classroom or
a field experiment. And we prefer to do this simpli-
fication ourselves, as the ones best qualified. This
signifies a certain Whole-Earth view, a sense of con-
nection with other fields, which is still lacking in
oceanography.

An important advance in our field has been the
achievement of a unified treatment of shortwave and
longwave problems. Even through the 1960's, short-
wave and longwave experts kept to their owm turf.
Their methods were entirely distinct. But when I
began building the ATRAD model in 1970 (Wiscombe,
1975), I was unaware of these distinctions. Using
exponential fits and LOWTRAN, I developed a
methodology which was the same in all spectral re-
gions -- even the microwave. This kind of unifi-
cation has continued to the point where most of
the younger radiation scientists are able to work
in any region of the electromagnetic spectrum.

This is absolutely necessary nowadays. Climate
problems involving cloud or stratospheric ozone
changes lead to compensatory changes in shortwave
and longwave fluxes; you cannot just look at ome
or the other. Carlson/Benjamin (1980) found that,
as the amount of Sahara dust over the GATE area
increased, there were big changes in both the
shortwave and longwave fluxes to space —- which can-
celled almost perfectly! And most remote sensing
will be done, in the future, with multi-spectral
strategies.

It struck me forcefully, in assembling the Bib-
liography, that, compared to European scientists,
we in the U.S. are much more enamoured of models.
As a result, I see rather an unhealthy imbalance
between theory and experiment. It is true that li-
dar is a beehive of activity, but not everything
can be measured with lidar. Many experimentalists
have expressed discouragement that, while theore-
ticians grind out papers at a furious pace, their
work necessarily is much slower to appear, making
them seem unproductive. If it is true that we
have come to place a higher value on theoretical
than on experimental work, then certainly we, as
scientists, have completely lost touch with our
roots.

The publication glut in our field has become
absolutely unbearable. A few of us, in satellite
radiation, do not publish enough, at least in the
archival literature. But for too many others,
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gone are the days when a scientist waited to pub-
lish until he had something important to say. Now,
many articles and reports are little more than our
version of time cards.

Too many of us are shotgunning the literature,
perhaps in search of lax editorial standards. But
getting an article published in some outlying jour-
nal seems a Pyrrhic victory, at best. We should
rather concentrate our papers in the main outlets
for atmospheric radiation research -- JAS, JAM,
Applied Optics, JQSRT, and QJRMS (everyone wants
to publish at least once in QJRMS; such is its
cachet). Only by doing so do we have any chance at
all of keeping abreast of one another's work.

It is always a pleasure to welcome new books in-
to our field. Among many, I might mention Liou
(1980), our first advanced textbook on atmospheric
radiation; Paltridge/Platt (1976), with more em-
phasis on IR radiation, dynamics, and climate
than Liou; Twomey (1977), on the mathematics of
remote sensing; Slater (1980), on remote sensing
instrumentation; and McCartney (1975), suitable for
an introductory course, with more material on cloud
and aerosol microphysics than the others.

Strangers in a Strange Land

Many radiation scientists feel, upon picking up
atmospheric science literature, like scientists in
general feel when they first pick up Science maga-
zine. The title does not prepare them for the
narrow focus, which in atmospheric science is dy-
namics (and in Science is biology). Shibboleths
like 'baroclinic instability', 'potential vorti-
city', and 'primitive equations' seem to fill the
literature, and often there is nary a photon to be
found anywhere. Hence the title of this section.

Until about 1968, when the climate revolution
struck, there were really very few atmospheric ra-
diation scientists. They could all have met in a
small room. But already by 1972, when Tom Vonder
Haar inaugurated the U.S. national radiation meet-
ing, a very large room was needed. For the fifth
such meeting, next fall in Baltimore, we have re-
ceived over 150 abstracts. Thus we are now a sub-
stantial component within atmospheric science, al-
though our growth has pretty much leveled out of
late.

But our prestige has not grown with our numbers,
There are prevailing attitudes that only dynamics
problems are (a) really difficult, or (b) worthy of
.an atmospheric scientist's attention. The first
seems especially strange to many of us, who mi-
grated into atmospheric science from physics,
mathematics, and engineering, where standards of dif-
ficulty are highly developed. Dynamics problems do
not seem any more or less difficult than radiation
problems to us, their vector analytic formulation
notwithstanding; they are merely different. I,for
one, have my Ph.D, 1n fluid dynamics, but I have al-
ways found radiation problems more challenging and
more interesting.

And as to what is worthy of an atmospheric sci-
entist's attention, that depends on your perspec-
tive. Agreed, if you want to forecast mid-latitude
cyclones, you had better pay close attention to your
dynamics. Radiation, slow albeit inexorable in its
effects, can safely be neglected. Indeed, as the
April 1, 1983 issue of Science announced, the NMC
forecast model "cranks out weather in perpetual
darkness."



But the matter is entirely otherwise if your focus
is climate; or polar meteorology; or tropical meteor-
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ology; or the stratosphere; or long-lived stratiform
clouds; or anywhere where fast-breaking baroclinic

waves do not grab all the headlines.

radiation is either important, or very important.
Many of us work in these areas; and we think they
are just as deserving of respect as short-term mid-

latitude dynamics.

Most of the rest of us work in remote sensing.
Just as the 1970's was the "Decade of Climate,"

so, I believe,

the 1980's and 1990's will be the
"Decades of Remote Sensing."
out of the overwhelming data-dearth dilemma.

It is the only way
But

for years remote sensing researchers have com-

The bibliography herewith consists of some 1300
items, arranged in groups more or less correspond-
ing to the section headings in the review.
striction even to this large slze was only possi-
(a) a paper had to have
radiation as its main focus (although I have
seeded some papers about using radiation to mea-—

ble by insisting that:
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In these areas,
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plained that they are treated like servants in the
house of atmospheric science -- like mere purvey-
ors of an engineering product.

They would like it

known, as would I, that remote sensing is a first
class theoretical and experimental problem,every
bit as deserving of respect as baroclinic wave

studies.

It would seem only prudent for atmospheric sci-

ence as a whole to open

its doors and grant full

citizenship to those of us in radiation, climate,

and remote sensing. We

are, after all, carrying

some of the torches which will light the way into

her future.

And we have no desire whatsoever to

remain 'Strangers in a strange land.'
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Introduction

Dynamic neteorology is the study of atmospheric
motions associated with weather and climate.
Traditionally dynamical meteorologists have
emphasized motions of synoptic and planetary
scale. During the past four years there have
been a number of exciting developments in the
dynamics of synoptic and plantary scale motions,
Many of these are related to various aspects of
short term atmospheric variability both
internally and externally generated. A number of
studies have gone beyond the traditional
perturbation approach in which disturbances are
imposed on a zonally symmetric basic state.
Significant progress has been made in
understanding the dynamics of the quasistationary
zonally asymmetric flow and its control of the
transient circulatioms,

In this review we focus on the progress made
in the understanding of synoptic and planetary
scale motions in the troposphere. Although many
important advances have been made in
stratospheric dynamics, that area is covered in
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another review (Hartmann, 1983) thus,
stratospheric problems will be considered here
only in terms of the links between the
stratosphere and the troposphere.

Linear Instability Studies

The study of baroclinically unstable flows
remains a central theme of theoretical dynamics.
In recent years the stability of realistic mean
zonal flow profiles with both latitudinal and
vertical mean wind variations has been studied
using both initial value and eigenvalue
techniques. An important conclusion of these
studies is that planetary scale (wavenumber 1-3)
disturbances can be baroclinically unstable in
the presence of realistic wind profiles on the
sphere, and that such modes can have very large
vertical scale and, hence, may account for the
observed transient eastward propagating long
waves of the Southern Hemisphere winter
stratosphere. (Hartmann, 1979; Straus, 1981). It
has been shown that the discrepency between these
results and earlier beta-plane idealizations is a
consequence of the specification of fixed
meridional scales in the beta-plane models
(Hoskins and Revell, 1981).

At the other end of the spectrum of baroclinic
instability, progress has been made in



